ADI拍了拍你,并献上计算DC-DC补偿网络的分步过程教程_焦点滚动
时间:2023-06-17 11:21:39来源:面包芯语

设计DC-DC转换器时,应仔细选择FET、电感、电流检测电阻和输出电容等元件,以匹配所需的输出电压纹波和瞬态性能。在设计功率级之后,闭合环路也很重要。DC-DC电源包含一个使用误差放大器(EA)的负反馈环路。在负反馈系统中传播的信号可能会在其路径中遇到极点和零点。单个极点会使信号相位减小约90°,并使增益斜率减小-20 dB/Dec,而单个零点会使相位增加约90°,并使增益提高+20 dB/Dec。如果信号的相位减小-180°,则负反馈环路可能变成正反馈环路并发生振荡。保持环路稳定并避免振荡是电源的设计准则。


(资料图)

测试DC-DC稳定性的方法有两种。第一种是频率响应分析(FRA),此方法将会创建波特图。第二种方法是时域分析,此方法将会使负载电流发生瞬变,并可观察到输出电压的欠冲和过冲响应。为了实现稳定的设计,应确保避免相位降低-180°的情况,并保持相位裕量(PM)大于45°。相位裕量为60°是较为理想的情况。当电源设计的带宽(BW)较宽时,器件对电流负载变化的响应会更快。电源的带宽是0 dB增益与频率轴交点的频率。该频率也称为交越频率Fc,可观察到其相位高于45°。DC-DC转换器的带宽是其开关频率Fsw的导数,通常在Fsw/10 < Fc < Fsw/5的范围内。越趋近于Fsw/5则意味着带宽越宽,实现起来也会更难。带宽越宽,相位越低,因此需进行设计权衡。增益裕量(GM)是指Fsw/2和–180°处的负增益,-8 dB或更高的值将能很好地衰减可能的开关噪声,或减小相移-180°时的增益可能性。我们希望以-20 dB/Dec的斜率穿过0 dB点。

图1.波特图,显示了带宽、相位、增益裕量和0 dB时的交越频率Fc

图2.电源带宽越宽,器件对电流负载变化的响应越快

功率级LC滤波器是指给定拓扑(降压、升压等)的电感和等效输出电容。各种拓扑常用的架构有两种:电压模式(VM)和电流模式(CM)。VM架构和CM架构中的同一LC滤波器会产生不同行为。简单说来,用于VM架构的LC滤波器会增加两个极点。CM架构额外包含一个电流检测反馈路径,有助于消除LC滤波器的双极点。VM架构则难以做出补偿,因为LC双极点需要更多的零点来抵消双极点效应,因此需要更多元件。

图4.简化VM降压LC滤波器行为的仿真结果

图5.电压控制电流源用作CM降压的模型;ESR为步进式

LC滤波器会导致相位损失。补偿网络用于补偿相位,通过向环路添加极点和零点,可抵消LC滤波器引起的相位滞后/超前和增益变化。

CM架构补偿器称为2型补偿器。图7所示为2型补偿器。AD8038为EA,R2、R3为反馈电阻,R4为电阻,V1通过R4将频率注入环路以执行FRA。补偿网络由R1、C1和C2组成。

图7.LTspice中的2型补偿器模型

图8.2型补偿器仿真结果、极点/零点位置和斜率变化

在VM架构中,补偿器有一个额外的极点/零点组合,可抵消LC滤波器的额外相位损失。图9显示了用于VM架构的3型补偿器网络,图10显示了其频率响应。

图9.VM架构补偿器,也称为3型补偿器

C3和R5是与顶部反馈电阻R3并联的两个附加元件。3型补偿器的极点和零点位置为:

请注意,Fz1(EA)和Fz2被置于同一频率。有时会使用类似3型的补偿方案,即在顶部反馈电阻上设计单个电容,以剔除高频极点,补偿器斜率将继续保持在0 dB。

一种闭合环路的方法是让LC滤波器极点/零点的时间常数与补偿器零点/极点的时间常数一致,这样就可以实现相互抵消,并提供总计-20 dB/Dec的增益斜率。

图11.调整对齐VM和CM中LC滤波器与补偿器的极点和零点

图12.LTC3981 28 V至5 V/6 A设计原理图,其中补偿网络未对齐

LTC3891是一款CM控制器,用于将28 V降压至5 V/6 A。ITH引脚上的补偿网络与等效输出电容及其总ESR不一致,导致在瞬态负载测试中出现振荡。输出端测得的开关频率为23 kHz,而不是预期的500 kHz。

将功率级和补偿器这两个电路组合在一起,形成一个模拟CM架构闭环行为的线性电路。

图14.线性电路模拟CM稳压器,补偿网络未对齐

图15.线性模型的仿真结果,使用放大器作为误差放大器,常数不一致

G1是电压控制电流源。其值为6,意味着如果G1正输入端的电压为1 V,则其输出端将提供6 A电流。该电路的频率响在不同速率下显示不同的斜率变化,0 dB交越频率处的相位为25°。因此,时域中存在振荡。

为使时间常数一致,我们首先需要知道功率级的CEQ、ESREQ和RLOAD

R1由设计人员选择;这里选择R1 = 11.5 kΩ,与R3相同。R1 × C1(z) = CEQ× RLOAD(p)。求解C1:

图16.极点/零点调整对齐后,使用放大器作为EA的线性模型

CEQ× ESREQ(Z) = R1 × C3 (P),补偿器极点的时间常数由R1 × C3决定。求解C3:

使用此平均模型时,正确仿真结果显示-20 dB/Dec的斜率和90°的相位。如果结果不同,则需要验证计算。

使用运算放大器作为EA的缺点之一在于无法正确预测带宽。尽管如此,此方法仍然非常实用,可帮助验证一致计算。可以通过增加R1电阻值来提高带宽。如果R1增加,则补偿器电容需要按相同比例减小,以保持时间常数一致。R1不可无限制地增加,因为增益越高,0 dB时的相位裕量越低。当时间常数一致时,相位将始终保持为90°。需要利用IC开关模型验证计算值,然后还需进行瞬态响应基准测试。

图17.极点/零点调整对齐后得到的结果,斜率为-20 dB/Dec,90°高相位值

图18.ITH引脚上的补偿网络与输出LC滤波器保持一致

用另一个电压控制电流源替代运算放大器,可以简化该线性模型,并提升其准确率。LTC3891数据手册提供了跨导值,1.2 V下gm = 2 mmho。G1正输入为1 V,因此新的电流值将为7.2,因为7.2 A/1.2 V = 6 A/V。新电路(图20)的仿真如图21所示,预测带宽将为46 kHz。

图20.更为简单的对齐电路,使用了G2作为误差放大器,其相应的gm值取自数据手册

RHPZ零点会增加20 dB的增益,并使相位减小约90°,因此无法进行补偿。对于在连续导通模式下工作的升压、降压-升压和sepic等拓扑,这个零点会限制带宽。RHPZ的频率位置计算如下:

图21.使用G2作为EA的更简单电路模型可提供更宽的带宽

图22.图18中LTC3891设计的LTpowerCAD结果

LTC3533是一款VM架构降压-升压型稳压器。在升压模式下,其RHPZ将成为限制因素。当输入为2.4 V的VIN(MIN)时,LTC3533演示板配置为3.3 V/1.5 A。在这种情况下,占空比D将为D = (Vo – VIN)/ Vo = (3.3 – 2.4)/3.3 ≈ 0.27。RLOAD= VOUT/IOUT = 3.3/1.5 = 2.2 Ω。

RHPZ位置可以通过以下任一公式求得:

闭合环路的安全位置将是在8.4 kHz。Rt设置开关频率Fsw = 1 MHz。请注意,由于缺少RFF,此补偿是类似3型的补偿,因此Cff不会产生额外的高频极点。

极点和零点的位置为:

LC滤波器的双极点位置在15.65 kHz。两个零点Fz1和FzCff集中在一起,频率约为9 kHz,以抵消LC滤波器的极点。此外,LC滤波器在967 kHz处形成的零点的影响被896 kHz处的极点抵消。

图23.LTC3533演示板原理图

图24.使用运算放大器作为EA的VM架构的一阶模型;LTC3533演示板值

图25.使用电压控制电压源的VM控制的更简单电路

图26.两个电路的仿真结果

使用运算放大器作为EA的VM架构的平均LTspice电路,可用来检查极点和零点的对齐情况。通过将电压控制电压源用作EA,可以进一步简化电路。其增益值源自数据手册中指定的误差放大器AVOL,即80 dB。80 dB = 20log10000。因此在仿真中取用了10000。两种电路的仿真提供了非常相似的解决方案。带宽没有像CM电路仿真中那样变化。增益非常相似,相位预测值为90°,但这仅说明了可以进行正确对齐。输出端有一个188 μF附加电容和一个0.2 Ω电阻。如图4所示,电压模式LC滤波器可以产生高Q,尤其是当ESR和DCR的值较低时。为确保LC滤波器具有适当的阻尼,需在输出端额外添加一个RC,具体计算如下:

LTspice电路仿真为验证补偿网络的计算提供了一种高效可靠的方法。虽然所讨论的线性模型不包括电流检测元件、信号增益或RHPZ信息,但仿真速度快和兼容各种DC-DC拓扑的优势将能让相关设计人员大受裨益。此外,如果获得的结果正确,输出将显示-20 dB/Dec的增益斜率和大约90°的相位。

标签:

生活指南
  • 世界动态:5236万元!普信惠福非法吸收公众存款案一审开庭审理

    大皖新闻讯6月15日,黄山市屯溪区法院一审公开开庭审理普信惠福非法吸

  • 动力参数亮眼/调校有待提升 凯翼昆仑500试驾体验

    自去年进行了品牌焕新之后,凯翼汽车进入全新阶段,并且很快为大家带来

  • 打造工业行业标杆应用 苏州电信助力5G赋能从“制造”向“智造”升级

    打造工业行业标杆应用苏州电信助力5G赋能从“制造”向“智造”升级

  • 北京持续深化职称改革 职称评审可“一产一策”“一链一策”

    中新网北京6月16日电(记者杜燕)北京进一步深化职称制度体制机制改革。

  • 天天热议:高灯科技交易鉴证,构建一个合规且充满“信任感”的开放平台

    当前,我国“以数治税”改革正往纵深挺进,打击偷税骗税也将进入一个新

  • 世界新消息丨白灰球磨机设备_白灰球磨机设备

    当前大家对于白灰球磨机设备都是颇为感兴趣的,大家都想要了解一下白灰

  • 财政部:前5月证券交易印花税收入891亿元,同比降36.9%_世界快看

    印花税1848亿元,同比下降14 6%。其中,证券交易印花税891亿元,同比下

  • 环球热讯:盛夏美食节登场 众仙云集争《远征》首"负"

    盛夏美食节登场众仙云集争《远征》首 "负 "介绍了  传说中的美食仙境

  • 一图读懂“亮剑浦江”上海个人信息保护专项行动:为期半年,“剑”指八大消费场景 全球实时

    设计师:王璐瑶6月16日,“亮剑浦江·消费领域个人信息权益保护专项执

  • 热点在线丨闵行海事局举行黄浦江上游水上消防救生综合大演练

    “闵行海事局,闵行海事局,我是‘楚江128’、我是‘楚江128’,我船在

  • 迪士尼可以带打光板进去吗

    迪士尼乐园是一个比较梦幻的游乐园,里面有各种卡通人物,还有各种主题

  • 市场监管总局出新规 鼓励相关经营主体重塑信用

    (记者杨曦)据市场监管总局消息,为鼓励支持经营主体自我纠错、重塑信

  • 红酒怎么选才是正宗好喝的酒?|全球快资讯

    选择红酒首先看一些酒瓶的标签和外观是否清晰,产期、品种和年份等信息

  • 行车记录仪被清空了怎么可以恢复

    行车记录仪被清空了怎么可以恢复内容哪里找呢?有没有谁介绍一下呢?其

  • 仁怀市发布2023年医保惠民政策

    中新网贵州新闻6页16日电 16日,仁怀市召开2023年医保惠民政策新闻发

  • 安纳波利斯市

    1、安纳波利斯市是美国马里兰州首府。文章到此就分享结束,希望对大家

  • 民生
    • 环球资讯:气温攀升 迎峰度夏用电高峰期提前

    • 微信网名女生简单气质霸气_微信网名女生简单气质 环球消息

    • 1-5月北京规模以上工业运行情况

    • 美知名媒体人称“世界上其他国家对中国的看法和美国不同”引发网友共鸣|最新消息